Search results for "satellite image"

showing 10 items of 54 documents

Intraspecific Differences in Spectral Reflectance Curves as Indicators of Reduced Vitality in High-Arctic Plants

2017

Remote sensing is a suitable candidate for monitoring rapid changes in Polar regions, offering high-resolution spectral, spatial and radiometric data. This paper focuses on the spectral properties of dominant plant species acquired during the first week of August 2015. Twenty-eight plots were selected, which could easily be identified in the field as well as on RapidEye satellite imagery. Spectral measurements of individual species were acquired, and heavy metal contamination stress factors were measured contemporaneously. As a result, a unique spectral library of dominant plant species, heavy metal concentrations and damage ratios were achieved with an indication that species-specific chan…

Optical sampling<em>Dryas octopetala</em>010504 meteorology & atmospheric sciencesScienceDryas octopetala:Zoology and botany: 480 [VDP]0211 other engineering and technologiesRed edge02 engineering and technologyAtmospheric sciences01 natural sciencesCassiope tetragonaNormalized Difference Vegetation IndexSvalbard<em>Cassiope tetragona</em>Cassiope tetragonaSatellite imagerySalix polaris<em> Salix polaris</em>Arctic vegetationDryas octopetalaRapidEye:Zoologiske og botaniske fag: 480 [VDP]Tundra021101 geological & geomatics engineering0105 earth and related environmental sciencesbiologySpectrometryQRed edgebiology.organism_classificationSalix polarisTundravegetation indicesBistorta viviparaGeneral Earth and Planetary SciencesEnvironmental science<em>Bistorta vivipara</em>Remote Sensing
researchProduct

Atmospheric correction of ENVISAT/MERIS data over inland waters: Validation for European lakes

2010

Traditional methods for aerosol retrieval and atmospheric correction of remote sensing data over water surfaces are based on the assumption of zero water reflectance in the near-infrared. Another type of approach which is becoming very popular in atmospheric correction over water is based on the simultaneous retrieval of atmospheric and water parameters through the inversion of coupled atmospheric and bio-optical water models. Both types of approaches may lead to substantial errors over optically-complex water bodies, such as case II waters, in which a wide range of temporal and spatial variations in the concentration of water constituents is expected. This causes the water reflectance in t…

Inland watersAtmospheric correction1903 Computers in Earth SciencesSoil ScienceGeologyInversion (meteorology)550 - Earth sciencesAerosolMERISAtmospheric correction10122 Institute of GeographyAerosol optical thicknessValidationWater modelEnvironmental scienceSpatial variabilitySatellite imageryWater qualityComputers in Earth Sciences910 Geography & travelSurface water1111 Soil Science1907 GeologyRemote sensing
researchProduct

Evaluation of the MODIS Albedo product over a heterogeneous agricultural area

2013

In this article, the Moderate Resolution Imaging Spectroradiometer MODIS Bidirectional Reflectance Distribution Function BRDF/Albedo product MCD43 is evaluated over a heterogeneous agricultural area in the framework of the Earth Observation: Optical Data Calibration and Information Extraction EODIX project campaign, which was developed in Barrax Spain in June 2011. In this method, two models, the RossThick-LiSparse-Reciprocal RTLSR which corresponds to the MODIS BRDF algorithm and the RossThick-Maignan-LiSparse-Reciprocal RTLSR-HS, were tested over airborne data by processing high-resolution images acquired with the Airborne Hyperspectral Scanner AHS sensor. During the campaign, airborne im…

010504 meteorology & atmospheric sciencesMeteorologyPixel0211 other engineering and technologiesHyperspectral imaging02 engineering and technologyAlbedo01 natural sciencesGeneral Earth and Planetary SciencesEnvironmental scienceSatelliteSatellite imageryModerate-resolution imaging spectroradiometerBidirectional reflectance distribution functionZenith021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingInternational Journal of Remote Sensing
researchProduct

Discriminating irrigated and rainfed olive orchards with thermal ASTER imagery and DART 3D simulation

2009

Article in Press

Atmospheric Science010504 meteorology & atmospheric sciences0211 other engineering and technologiesBiometeorology02 engineering and technologyCanopy temperature01 natural sciencesNormalized Difference Vegetation IndexASTERAdvanced Spaceborne Thermal Emission and Reflection RadiometerVegetation indexEvapotranspirationRadiative transferIrrigatedSatellite imageryRainfed agricultureLeaf area index021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing2. Zero hungerGlobal and Planetary ChangeForestry15. Life on landEnvironmental scienceDARTRainfedOrchardAgronomy and Crop ScienceAgricultural and Forest Meteorology
researchProduct

Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features

2016

An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics--such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient--are insufficient for achieving adequate results under different image deformations. Thus, new…

Satellite ImageryComputer scienceComputer Visionlcsh:MedicineTransportation02 engineering and technology01 natural sciencesPattern Recognition Automated0202 electrical engineering electronic engineering information engineeringImage Processing Computer-Assistedlcsh:ScienceMultidisciplinaryApplied MathematicsSimulation and ModelingPhysicsClassical MechanicsDeformationPhysical SciencesEngineering and Technology020201 artificial intelligence & image processingAlgorithmsResearch ArticleNormalization (statistics)Matching (statistics)Computer and Information SciencesSimilarity (geometry)Imaging TechniquesImage registrationResearch and Analysis MethodsImage (mathematics)010309 optics0103 physical sciencesImage Interpretation Computer-AssistedComputer GraphicsComputer ImagingEigenvalues and eigenvectorsDamage Mechanicsbusiness.industrylcsh:RPattern recognitionEigenvaluesBoatsTarget DetectionAlgebraLinear AlgebraSubtraction TechniquePath (graph theory)lcsh:QAffine transformationArtificial intelligencebusinessEigenvectorsMathematicsHomography (computer vision)PLoS ONE
researchProduct

An Improved Forecasting Model from Satellite Imagery Based on Optimum Wavelet Bases and Adam Optimized LSTM Methods

2021

This paper proposes a new hybrid approach I-WT-LSTM (i.e., Improved Wavelet Long Short-Term Memory (LSTM) Model) for forecasting non-stationary time series (TS) from satellite imagery. The proposed approach consists of two steps: The first step aims at decomposing TS using Multi-Resolution Analysis wavelet (MRA-WT) into inter-and intra-annual components using 18 different mother wavelets (MW). Then, the energy to Shannon entropy ratio criterion is calculated to select the best MW. The second step is based on the LSTM model using Adam optimizer to predict the future. The proposed approach is tested using TS derived from Moderate Resolution Imaging Spectroradiometer (MODIS) images from 2001 t…

WaveletSeries (mathematics)Computer sciencebusiness.industrySatellite imageryPattern recognitionImage processingModerate-resolution imaging spectroradiometerArtificial intelligenceTime seriesHybrid approachbusinessEnergy (signal processing)
researchProduct

On the use of unmanned aerial systems for environmental monitoring

2018

[EN] Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems; enhancing the understanding of hydrological processes; optimizing the allocation and distribution of water resources; and assessing, forecasting, and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors, and satellite observations. These data are utilized in describing both small-and large-scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that li…

environmental_sciencesINGENIERIA HIDRAULICA010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologies02 engineering and technology01 natural sciencesRiver monitoringBridge (nautical)Field (computer science)Vegetation indicesRiver monitoringEnvironmental monitoringEnvironmental impact assessmentSatellite imageryNatural disasterWater content2. Zero hungerMoistureAgricultural ecosystemsSettore ICAR/02 - Costruzioni Idrauliche E Marittime E IdrologiaEnvironmental monitoring04 agricultural and veterinary sciencesVegetationRemote sensingRemote sensing (archaeology)Vegetation indiceSystems engineeringUASEarth and Planetary Sciences (all)Context (language use)Leverage (statistics)EcosystemRemote sensing021101 geological & geomatics engineering0105 earth and related environmental sciencesData collectionPrecision agriculturebusiness.industryWater resources13. Climate actionAgricultureITC-ISI-JOURNAL-ARTICLESoil water040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceGeneral Earth and Planetary SciencesPrecision agricultureSoil moisturebusinessITC-GOLDSettore ICAR/06 - Topografia E Cartografia
researchProduct

Combining long-term land cover time series and field observations for spatially explicit predictions on changes in tropical forest biodiversity

2011

Combining spatially explicit land cover data from remote-sensing and faunal data from field observations is increasingly applied for landscape-scale habitat and biodiversity assessments, but without modelling changes quantitatively over time. In a novel approach, we used a long-term time series including historical map data to predict the influence of one century of tropical forest change on keystone species or indicator groups in the Kakamega–Nandi forests, western Kenya. Four time steps of land cover data between 1912/13 and 2003, derived from Landsat satellite imagery, aerial photography and old topographic maps, formed the basis for extrapolating species abundance data on the army ant D…

GeographyHabitatAerial photographyEcologyGuildBiodiversityGeneral Earth and Planetary SciencesSatellite imageryPhysical geographyLand coverKeystone speciesField (geography)International Journal of Remote Sensing
researchProduct

2019

Urban Heat Islands (UHIs) at the surface and canopy levels are major issues in urban planification and development. For this reason, the comprehension and quantification of the influence that the different land-uses/land-covers have on UHIs is of particular importance. In order to perform a detailed thermal characterisation of the city, measures covering the whole scenario (city and surroundings) and with a recurrent revisit are needed. In addition, a resolution of tens of meters is needed to characterise the urban heterogeneities. Spaceborne remote sensing meets the first and the second requirements but the Land Surface Temperature (LST) resolutions remain too rough compared to the urban o…

010504 meteorology & atmospheric sciences0211 other engineering and technologiesHyperspectral imaging02 engineering and technologyAlbedo01 natural sciences13. Climate actionKriging11. SustainabilityGeneral Earth and Planetary SciencesEnvironmental scienceSatelliteSatellite imageryUrban heat islandScale (map)Image resolution021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRemote Sensing
researchProduct

Characterization of the atmosphere during SEN2FLEX 2005 field campaign

2008

The European Space Agency carried out the Sentinel-2 and Fluorescence Experiment (SEN2FLEX) campaign in Barrax (Spain) during the summer of 2005, with the main objective of observe solar induced fluorescence signal using the AirFLEX airborne instrument over different vegetation targets in order to verify signal suitability for observations from space as proposed in the FLEX mission. A highly precise atmospheric correction is mandatory for adequate measurements of the AirFLEX instrument; thus a complete characterization of the atmosphere was programmed in SEN2FLEX in order to document the presence of atmospheric aerosols above the experimental area, as their effects represent the major sourc…

Atmospheric ScienceRadiació solarMeteorologySoil Science550 - Earth sciencesAquatic ScienceMineral dustOceanographyAtmosphereGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Satellite imageryEarth-Surface ProcessesWater Science and TechnologyRemote sensingAerosolsEcologyAtmospheric correctionPaleontologyForestryGeofísicaAerosolGeophysicsLidarSpace and Planetary ScienceEnvironmental scienceSatelliteWater vaporJOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
researchProduct